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ABSTRACT 
A kind of generalized 3D Euler equations with periodic boundary conditions, that describes the behaviour 
of the small scale flow in a turbulence model is solved. A fully conservative numerical scheme, that combines 
pseudospectral discretization in space with a variation of Crank-Nicholson's scheme in time, is introduced. 
Some numerical tests show that the numerical solution reaches an asymptotic statistic steady state. In the 
case of well developed isotropic turbulence, these results are shown to present a reasonable quantitative 
agreement with the classical theory. 
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INTRODUCTION 

This paper deals with the solution of a kind of generalized three-dimensional Euler equations 
with periodic boundary conditions, that we state below. The numerical solution of this problem 
appears as a partial question in the asymptotic analysis of viscous flows with highly oscillating 
initial conditions made by McLaughlin, Papanicolaou and Pironneau16 and subsequent 
authors8,9. In these works, problem (3) describes the canonical behaviour of the small scale 
flow. We shall briefly describe the analysis done in these papers in order to give a motivation 
to our problem and to state it properly. 

Let ε > 0 be a small parameter and T > 0 a given final time. We shall consider the Navier-Stokes 
equations for three-dimensional viscous fluids in R3 x [0, T]; with kinematic viscosity of order ε2: 

Here, uε(x, t) and pε(x, t) are the velocity field and the pressure, respectively, and Μ > 0 is a given 
number of order one. Also, u0 is a smooth velocity field in R3 and w0(y, x) is a smooth velocity field 
in R3 x R. The field w0(y, x) is supposed to be periodic in the y variable, to be free-divergence 
in the x and y variables and to have zero mean in the y variable: 

where Y is a period cell of w0. 
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Note that ε represents the dimensionless ratio of characteristic length scales associated to the 
initial data uε(x, 0). It is known that problem (1), completed with suitable conditions at infinity, 
has a unique smooth solution if T is small enough2,12,14,22. 

The purpose of the work done in References 8, 9, 16, is to analyse by asymptotic techniques 
the behaviour of the flow governed by (1) as ε decreases to zero. The velocity field uε is assumed 
to admit an asymptotic expansion of the form: 

Here, u(x, t) is the 'mean velocity field', and w(y, τ; x, t), u(1)(y, τ; x, t ) . . . are the 
'perturbations', that are assumed to be periodic in y, bounded in Τ, and to have y — τ zero mean, 
defined as: 

Also, a(x, t) are the Lagrangian coordinates associated to the velocity field u: 

A formal mathematical derivation is used to obtain equations that determine the terms in the 
asymptotic expansion. In particular, the perturbation w is determined by means of a 'canonic' 
Cauchy problem for the following generalized 3D Euler equations in the y and τ variables: 

Here, C is a square symmetric matrix of dimension 3 x 3, depending only on the mean velocity 
field u, as follows: 

Note that matrix C depends only on the variables x and t, and acts as a parameter in (3). 
A formal mathematical argument fully based on the conservation properties of (3) is used to 

deduce averaged equations that govern the mean flow of uε. These equations involve the mean 
velocity field u, and also the following statistics of w: 

• mean kinetic energy: 

• mean helicity: 

where =Ñy x (C - 1 ). 
These averaged equations are the following: 
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Here, and are 3 x 3 tensors, and yq and yh are scalar functions, of the matrix C. All of 
them are the 'closure terms' of the model. They are given through the solution of Euler 
equations (3), as follows: 

system (2)-(7) is closed by giving the initial condition of Euler equations (3): 

Let us remark that once system (2)-(8) is solved, the main perturbation w is determined as 
follows: 

The set of equations (2)-(8) can be viewed as a model that describes the asymptotic behaviour 
of uε as ε decreases to zero. From the point of view of turbulence modelling, this is a very 
sophisticated two equations model, whose performances must be analysed in test cases before 
using it in cases of practical interest. 

Some relevant numerical tests show that the model takes into account some qualitative 
transient effects of the interactions large-small structures, that are misregarded by the usual 
steady turbulence models4,6,7,8. However, little information about the quantitative performances 
of the model has been obtained up to the present. 

The big difficulty in obtaining good quantitative results arises when computing the closure 
terms of the model. Indeed the generalized Euler equations (3) are solved by means of a steady 
approach5,17. Concretely, the steady equivalent of (3) is solved by a combined least 
squares-conjugate gradient algorithm. This provides temptative values for the closure terms. 
However, this least squares formulation provides numerical solutions of (3) that are only locally 
unique, and that are very sensitive to the initialization. Thus, some of these solutions could not 
be physically correct. This has proved to happen when solving some steady flow problems, such 
as transonic flow around obstacles. In this case, some shocks with unphysical locations may 
appear11. 

Our purpose here is to perform a conservative transient approach to the solution of (3). As 
the derivation of the model equations is fully based upon the conservation properties of Euler 
equations, it seems convenient to use numerical schemes that conserve in time Τ all quantities 
involved in the model (mean, mean kinetic energy and mean helicity). Our hope is to compute 
reasonably accurate closure terms. 
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First, we introduce two versions of a solver that combines a pseudospectral discretization in 
space with a variation of Crank-Nicholson's scheme in time. This solver is proved to possess 
excellent conservation properties. Next we prove that one of the two versions of the solver is 
second order accurate for smooth enough solutions, under some specific restrictions. The 
numerical tests performed are then described. A quasi-steady state of the space-time means in 
increasing finite intervals of the closure terms is found. This indicates that our approach is good 
to compute the closure terms. Finally, we give some evidence that the computed closure terms 
are quantitatively correct. Concretely, we verify that the computed values of some meaningful 
statistics agree with the 'theoretical' values given by the well known theory of isotropic turbulence 
with constant mean velocity field. 

We shall use the following notation for norms and spaces. 
Let Y denote the open set defined by: 

Given k integer and q Î [1, + ∞], we shall denote by Wk,q(Y) the usual Sovolev function space: 

This is a Banach space endowed with the following norm: 

where ||•||q denotes the usual norm in Lq(Y). We shall denote by Wk,qp(Y) the space of functions 
that belong to Wk,q(R) which are periodic with period cell Y. 

When q=2 we shall denote Wk.qP(Y) by HkP(Y). 
Finally, |•| will denote the euclidean norm on R3. 

A FULLY CONSERVATIVE PSEUDOSPECTRAL SOLVER 
The discretization in time of flow problems by means of Crank-Nicholson's scheme helps to 
obtain numerical schemes that reproduce the conservation properties of the continuous equation. 
This happens, in particular, when solving 2D Euler equations in bounded domains21, or 3D 
Navier-Stokes equations with periodic boundary conditions10. In our case, we shall use a 
variation of this scheme to discretize Euler equations (3) in time, together with a pseudospectral 
discretization in space, in order to obtain a fully conservative solver. 

Description and properties of numerical scheme 
In order to give a motivation to our actual numerical scheme, let us state some facts concerning 

(3). 
Note at first that the initial perturbation w0 in (1) is y-periodic with period cell [0, 2Π]3 . Then, 

the initial condition w0 in (3) is y-periodic with period cell Y=[0, 2Π/S]3, s = q0/h0. This makes 
it necessary to consider discrete periodic functions with such period cell. 

Note also that the formula: 

transforms (3) into: 
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where p = π+½|G- and where we have dropped the explicit dependency on the y variable 
of the space derivatives. 

Under this formulation, the conservation of mean, mean kinetic energy and mean helicity in 
(11) is obtained in a natural way: 

This indicates the convenience of looking for a numerical scheme that keeps the structure of the 
equation in (11) if we wish to reproduce these conservation properties. 

To describe our scheme, let m ³ 1 and s > 0 be given integer and real numbers, respectively. 
Let us consider the following complex 2π/s-periodic functions: 

Let us denote by SN the space of functions spanned by: 

and by EN the space spanned by: 

Let us denote by CP(Y) the space of periodic continuous functions on R3 with period cell 
y = [0,2π/s]3, and define the space step h = 2π/2Ns. We shall define implicitly an interpolation 
operator PN from Cp(Y) onto [EN]3 as follows: 

for every v Î Cp(Y). 
The set of equalities that appears here constitutes a square linear system whose matrix is 

proportional to an orthogonal matrix. Its solution is known analytically, and it is given by15: 

with 

Also, we shall understand that if =(w1, w2, w3) Î [CP(Y)]3 then 

Denote by Î [EN]3 and paN Î EN the numerical approximations to and p, respectively, at 
time τa=a∆t, for a Î Z. Our first scheme is the following: 

Algorithm 1 
Initialization: 

Time step: For 0 £ τa £ T, compute 
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where 

and ∆c is the linear elliptic operator given by: 

Remarks 
• System (12)—(13) defines implicitly in terms of with pa+1 Î R3 determined by 

the restriction = 0. This system has a solution for any value (positive or negative) 
of ∆t, by virtue of Brouwer's fixed point theorem (see COROLLARY 1). This is used to define 
our discrete solution up to any preset time T > 0. 

• Equation (13) is close, but it is not exactly, Crank-Nicholson's scheme applied to the time 
solution of (11). 

We shall describe now the properties of Algorithm 1. 

LEMMA 1 (i). The sequence of functions defined by Algorithm 1 verifies: 

(ii) Assume =0. Then, if (12) holds, problem (13) is equivalent to the following set of 
equations: 

Proof 
Note at first that after discretization, all functions we are dealing with are of C∞ class, so that 

we may consider all derivatives of all orders in classical sense. 
(i) 
This is a direct consequence of (12). 
(ii) 
Equation (14) follows directly from (13). To prove (15), observe at first that problem (16) has 

a unique solution Î [EN]3. Observe also that is periodic with period cell Y, and 
that - ∆ c ( ) = 0; < > = 0. Then, 

Let us define =Ñx . Now, the formula: 

yields Ñ x ( ) = = . Also, formula (17) applied to yields: 
Also, we have periodic with period cell Y. Consequently, and (15) 

holds. 
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To prove now that (13) follows from (14), (15) and (16), note at first that (15), (16) and (17) 
imply: 

Thus, (14) yields: 

with 

By virtue of (12) and the hypothesis Thus, (15) and (17) yield = 0. As 
[EN]3, the only solution to this equation is a constant, which is given by the condition 

= 0 deduced from (15). 

Remark 
The condition = 0 is obtained, for instance, if is the L2 orthogonal projection of the 

initial condition onto [EN]3. Indeed, as the functions fk are eigenfunctions of all derivatives, 
the orthogonal projection commutes with the derivatives. 

The conservation properties of Algorithm 1 are stated as follows: 

THEOEREM 1 Let us denote by qa and ha the mean kinetic energy and the mean helicity of 
respectively; i.e. Then, qa=q0, ha = h0, "aÎ Z. 

Proof 
From (14) we obtain at first: 

where (·,·) represents the scalar product on [L2(Y,C)]3: 

Let us define the following discrete scalar product on [Cp(Y, C)]3: 

Observe that the quadrature formula 

is exact on S2N-1
15. Then, the discrete scalar product (20) equals the continuous one (19) in 

particular if φ1,φ2 are functions of [E N ] such that one of them at least is real. 
Integration by parts yields: 

Equation (18) reads now: 
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This formulation is used to prove the conservation of qa and ha with ease. Indeed, taking 
successively φN = yields: 

As matrix C is symmetric, integration by parts yields: 

Then, qa+1 = qa. 
Also, to prove the conservation of the mean helicity, one should consecutively take φN= C 

and φN = in (22). 

Remark 
Although Crank-Nicholson's scheme is frequently used in flow problems to build up numerical 

algorithms with good conservation properties, this is not the case here. One may be convinced 
of this fact by reproducing the proof above for Crank-Nicholson's scheme. Also, leap-frog 
scheme is well known to provide conservative discretizations in flow problems21. However, it 
can be proved with a little more work that leap-frog scheme again fails to reproduce the 
conservation properties of Theorem 1. Algorithm 1 seems to be especially well suited to conserve 
kinetic energy and helicity for Euler equations. 

The conservation of kinetic energy allows to ensure the existence of solutions of Algorithm 
1, as follows: 

COROLLARY 1 System (12)—(13) has always at least one solution. 

Proof 
Given consider the transformation T: [ E N ] 3 → [ E N ] 3 given by: 

where and p is the only solution of: 

and 

From Theorem 1, we obtain 

where 

which is a norm on [L2(Y)]3. 
As T is continuous, the Corollary follows from Brouwer's fixed point theorem. 
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Remark 
Observe that for each a Î Z3 there exists ∆ta depending on such that T is contractive if 

∆t < ∆ta. Thus, for such At the solution of (12)—(13) is unique. However, unicity is not ensured 
up to any arbitrary time T, as ∆ta can decrease arbitrarily fast. 

It is possible to introduce a slight modification of Algorithm 1 in such a way that the mean 
of is also conserved. To do so, one should replace the discrete L2 orthogonal projection PN 
by the continuous one QN. This yields the following algorithm. 

Algorithm 2 
Initialization 

Time step: For 0£τa£T, compute 

The conservation properties of Alg 2 are stated as follows. 

THEOREM 2 Let us denote by qa and ha the mean kinetic energy and the mean helicity, respectively, 
of the sequence furnished by Algorithm 2. Then, 

Proof 
Let us observe that from (10) we may write: 

Then, 

Consequently, (24) yields: 

The conservation of q and h are proved exactly as in Theorem 1. 

Remarks 
• Corollary 1 applies also to Algorithm 2: System (23)-(24) has always a solution. 
• Note that if the are uniformly bounded in H1 norm, then the mapping T of Corollary 1 

is uniformly contractive, and the unicity of is ensured. This is the case when Algorithm 2 
is applied to two-dimensional flows. We state this result as follows 

COROLLARY 2 Assume and the matrix C are two-dimensional, in the sense that they have 
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the following structure: 

Then, the following holds: 
(i) The discrete enstropy is conserved: 

(ii) There exists a ∆t0 depending only on such that if 0<∆ t<∆ t0 , the solution of (23)-(24) 
is unique. 

Proof 
(i) To prove that the L2 norm of is conserved constant, observe at first that formula (10) 

yields: 

where πa+1/2N Î EN is the solution of: 

Then, if does not depend on y3, the same holds for πa+1/2N and . Furthermore, due to 
the structure above of matrix C, a solution of (12) corresponds necessarily to =0. Then, at 
any time step the velocity field has the same two-dimensional structure as 

Consider now that 

and thus (14) may be written as: 

Due to the structures of and C, we have and then: 

Finally, this yields: 

(ii) In the same way as in (i) one proves that the mapping T of Corollary 1 conserves kinetic 
energy and enstropy. Thus, given we have: 

where KN is a constant depending on and N. 
Thus, T is contractive for ∆t small enough, uniformly in a. 

Computational aspects 
Let us remark that the coefficients that define the interpolation operator PN may be computed 

in 0(N3 log N) operations, by means of the Fast Fourier Transform (FFT). It is also possible 
to compute the values of PNv at the nodes (jh) starting from the in 0(N3 log N) by means 
of the inverse FFT1. A direct calculation would need 0(N6) operations in both cases. 
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Let us remark also that the orthogonal projection of onto [EN]3 can be 
computed exactly by means of the FFT with 2N points. Indeed, 

where the coefficients are given by: 

Moreover, as we have stated, if φ1, φ2 are functions of [E N ] 3 and one of them at least is real, 
then15: 

Consequently, 

Then, the coefficients may be computed with the FFT with 2N points. 

CONVERGENCE ANALYSIS 
It is well known that there are no results of existence of solutions of the Cauchy problem for 
Euler equations (3) for arbitrarily large time intervals. However, implicit function theory allows 
to prove the existence of smooth solutions for short time intervals2,14. Our next results state 
the convergence of our algorithms during the time interval of existence of smooth solutions, 
under some restrictions on the behaviour of the H1 norm of the discrete solutions. 

Let us at first recall the error estimates concerning the interpolation error associated to QN
15. 

LEMMA 2 Assume z Î (Y) with l³0. Then, there exists a constant K depending only on z such 
that: 

(i) 

for all m = 0, 1,. . ., l. 

Our main convergence result is stated as follows. 

THEOREM 3 Let us assume that problem (11) admits a unique solution during a time interval 
[0, T] verifying: 

Assume also that the initial condition verifies: 

for some constant C0. 
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Finally, assume that the sequence provided by Algorithm 2 is bounded in [H1(Y)]3. 
Then, the sequence converges to the solution of problem (11) in [L2(Y)]3, uniformly 

in time. More precisely, there exists a constant cT depending on and the time length T, such 
that: 

In particular, the convergence in L2 norm is second order accurate if k³3. 

Proof 
Let us recall that by virtue of Corollary 1, Algorithm 2 provides at least a sequence for 

each fixed ∆t>0. 
Let us denote (.,ta)by and (.,ta) by , and define the discretization error on wa by: 

Consistency estimate 
Let us define the consistency error by: 

where is the solution of: 

Taylor series yields: 

where is a smooth pressure and is an algebraic expression depending on time 
derivatives of orders 0, 1 and 2 of and . Thus, 

where is a smooth pressure, and is an algebraic expression depending on time derivatives 
of orders 0, 1 and 2 of and and of order 3 of w. 

Given φNÎ[EN]3 with free divergence, we have: 

for some constant c1 depending only on and T. 

Stability estimate 
Given φNÎ[EN]3 with free divergence, from (24) we obtain: 

Also, (27) yields in the same way: 

From these last two equations we get: 
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Let us now define the errors: 

and observe that because the operator QN conmutes with the derivatives. Observe 
also that: 

Moreover, 

Then, there exists a constant c2 depending on T such that: 

This suggests to take in (28). Let us obtain estimates for the r.h.s. of (28) in this case. 

Formula (10) yields: 

Thus 

This, Lemma 3 and (31) yield the following estimate: 

where c3 is a constant depending only on and T. Also, we may bound the second term in the 
r.h.s. of (28) as follows: 

where M is a uniform bound of the L2 norm of the 
Now, (29), (30), (32) and (33) yield: 

and consequently 

Thus, if ∆t is small enough, 
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Finally, Gronwall's Lemma yields 

This proves our Theorem. 

Remarks 
• Algorithm 2 is still convergent if M = o(Nk);i.e. if the H1 norm of explodes slower than Nk. 
• The main difficulty in proving the global existence of solutions for 3D Euler equations is to 

obtain estimates for the H1 norm of the solution. Thus, it is not surprising our restriction on 
the behaviour of the H1 norm of to prove the convergence. 

• In our numerical experiments, for short times the L2 norm of is not very sensitive to the 
actual value of N. 

• Algorithm 2 always converges if the flow is two-dimensional, in the sense of Corollary 2. 
Indeed, in this case the L2 norm of is constant. 

NUMERICAL EXPERIMENTS 
In this section we shall describe some issues concerning the practical implementation of 
Algorithm 1, so as its practical performance in some test cases. 

Initial conditions 
As initial condition for system (11) we have taken Beltrami fields: 

where the parameters a, b, c, λ are chosen in such a way that the value of both the initial mean 
kinetic energy q0 and helicity h0 is one. 

Beltrami fields are steady solutions of Euler equations (11) when C is the identity matrix I. 
Indeed, one has: 

Thus, in the framework introduced in the statement of the problem, the solution of problem 
(11) for C≠I can be viewed as a perturbation produced by the mean flow to an initially steady 
solution. 

Observe that given a solution of problem (11) with mean kinetic energy q0 and mean helicity 
h0, one always may re-scale and its period cell to obtain another solution with prescribed 
mean kinetic energy q′ and helicity h′ , as follows: 

Thus, taking q0=h0 = 1 is not a real restriction. 
We have also made the following choice for matrix C 
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This matrix corresponds to two-dimensional mean flow u in (4). If the mean flow is 
three-dimensional, matrix C depends on 5 parameters, so it is a very long lasting task to perform 
a numerical computation of the closure terms in the general case. Our choice seems to be 
reasonable to test our code. 

Note that for these and C, due to the symmetries of the problem, tensors and must 
have the following structure6,17: 

Practical issues 
We have built up a FORTRAN 77 code that implements Algorithm 1. As we have stated 

already, we have used the direct and inverse FFT to compute the interpolation operator PN and 
its inverse. Also, we have solved the non-linear problem (12)—(13) that defines by means 
of a black-box GMRES code20. This code provides a fast and highly vectorized solution of this 
problem. As our turbulence model is fully based upon the theoretical symmetries of Euler 
equations, it seems appropriate for our purposes to look for numerical solutions that reproduce 
these symmetries and, in particular, the structures of tensors and In practice, our numerical 
solution reproduce approximately these symmetries only if problem (12)—(13) is solved with 
very high precision (up to an error of order 10-9). 

Let us remark also that the closure terms defined in (6) have been computed by means of 
Simpson's rule. For instance, we have approximated the mean 

by 

where 

Let us remark that if w Î W1,∞(R,[L2(Y)]3), this formula converges to as ∆t decreases 
to zero3. 

Testing of code 
To test the. computation of the non-linear term we have taken initial conditions of the 

form: 

with 
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where k Î Z3 is an arbitrary vector, u Î R3 is any vector orthogonal to k, and a1,a2 are arbitrary 
constants. Note that Î [EN]3 if |k1|, |k2|, | k 3 | £ N - 1 . 

Such velocity fields are steady solutions of generalized Euler equations (11), verifying: 

Thus, Algorithm 1 gives "aÎZ. This has just been our result for many choices of the 
parameters k, u, a1, a2, and of the matrix C. 

Table 1 Convergence order estimates for statistics computed with Algorithm 1 

N = 8, ∆ t=0.6 N = 16,∆ t=0.3 N = 32, ∆t = 0.15 

r11 0.667498 0.667544 0.667550 2.93 
r12 -0 .140S68e - l -0.1448721e-1 -0 .145921e- l 1.93 
r22 0.665116 0.665123 0.665124 2.78 
r33 0663553 0.663578 0.663586 1.63 
s11 0.668096 0.668074 0.668070 2.46 
s12 -0 .332434e -1 -0.332405e—1 -0 .332398e- l 2.05 
s22 0.664439 0.664434 0.664433 2.30 
s33 0.667469 0.667494 0.667501 1.84 
yq 

2.011851 2.012471 2.012617 2.08 
yh 2.007124 2.006848 2.006776 1.93 
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Also, to test the convergence of our algorithm we have compared the asymptotic behaviour 
of the computed closure terms as ∆t and N decrease to zero. We have taken At proportional 
to N, so that there is just one discretization parameter that we call, for instance, h. Let us denote 
by e(h) the error corresponding to the computation of a given statistic, let us say s, of the solution 
w by means of Algorithm 1. If we assume that the error e admits an asymptotic expansion of 
the form: 

then an estimate of the convergence order of Algorithm 1 is given by: 

For instance, Table 1 shows our computed statistics, so as the corresponding estimate 
convergence order given by the formula above, when a = —0.1 in (35), for Τ = 2 . 4 . The value 
not represented are of order 10 -9 or smaller. 

This estimation gives orders of convergence that in most cases are quite close to p=2, with 
a certain range of variation. This is probably due to the small differences between the computed 
statistic in the three cases considered. 

Let us remark that the order of accuracy of the interpolation operator PN is the same as that 
of QN when the interpolated function is smooth enough, in the sense that Lemma 2 is also true 
if we replace PN by QN, for l³1. Thus, the order of convergence that could be expected from 
Theorem 2 is just p = 2. 
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Numerical results 
Our computations have shown the existence of a quasy-steady statistical behaviour of the 

numerical solution provided by Algorithm 1, with initial conditions given by (34), when N = 8 
and N = 16. This behaviour is reached for very long times (τ»400) (see Figures 1 to 5). This, 
together with the high precision needed to solve problem (12)-(13) makes our code highly 
time-consuming. In practice, this introduces severe limitations in the size of N, that should not 
be greater than 16. However, some tests for intermediate times show that the statistics computed 
when N = 32 and N= 16 are very close. Furthermore, the steady states corresponding to N = 8 
and N= 16 take similar values. Thus, taking N greater than 16 does not seem to be absolutely 
needed for our purposes of giving reasonably good computations of the closure terms for the 
turbulence model (4)-(8). 

Let us remark that the theoretical symmetries of the problem are well reproduced by the 
numerical solution. Figure 6 represents the time evolution of r13 and s13, that should be zero 
from the theoretical symmetries. In our computations, these statistics are not exactly zero, 
although they take values about 100 times smaller than the other statistics. Note that this 
symmetry is suddenly broken at time τ»35. One can prove that our algorithms are not stable 
in uniform norm for linear convection problems. In our case both algorithms are l2-stable, but 
probably not uniformly stable. This may be the reason for such symmetry breaking. 
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A QUANTITATIVE TESTING OF COMPUTED CLOSURE TERMS 

When the initial mean velocity field u0 is constant, model (2) to (8) reduces to a classical k-ε 
model for globally isotropic turbulence13,19. Indeed, now the mean velocity field u is constant, 
and the equations for q and h can be combined to give an equation for the rate of viscous 
dissipation e of the mean kinetic energy, 

This model is the following: 

where 

is the dissipation coefficient of the rate of viscous dissipation e. In the classical theory of isotropic 
turbulence, the same model (38) describes globally isotropic turbulence19. The numerical constant 
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d is obtained from experimental results and assumed to be universal in the sense that it is the 
same for similar experiments. Model (38) is physically meaningful as soon as d>0. Moreover, 
it is usually agreed that the value of d for fully developed turbulence is d= 1.92. Here, we obtain 
d analytically from the universal microstructure problem (3) with C=I. 

With an isotropic initial condition and C=I, Algorithm 1 yields d»1.46 for N=8, d»1.54 
for N=16 and d»1.52 for N = 32. This value is rather insensitive to the choice of the initial 
condition as one would expect from the universal character of the dissipation rate d. We 
think that this indicates that we are computing physically meaningful solutions of Euler equations, 
and that the closure terms that we obtain are relatively good approximations of the true values 
(up to an error of about 5% when N=32). A further improvement of the accuracy of these 
values would require a quite costly increasing of the number of degrees of freedom. 
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